Rabu, 17 Juni 2009

perkembangan teori atom

fisika ?????????????????????????????
Fisika sering disebut sebagai salah satu pelajaran yang sulit, bagaimanakah cara belajar fisika yang mudah dan tidak membosankan sehingga fisika dapat menjadi pelajaran yang diminati?

Siaran Iptek Voice hari Selasa 23 Desember 2008 pukul 08.30-09.00 WIB membahas topik: Fisika Gampang, Asyik dan Menyenangkan (Gasing) , narasumber Hari Juliata Priyadi, fisikawan, Surya Institut.

Hari menyatakan bahwa fisika gasing pertama kali dicanangkan oleh Prof. Yohanes Surya, beliau seperti yang kita kenal adalah tokoh yang membawa tim olimpiade fisika Indonesia ke dunia Internasional. Dari sepak terjang beliau inilah kebanyakan orang berpandangan bahwa ilmu fisika hanya menjadi milik orang-orang yang ber-IQ tinggi saja, namun sebenarnya tidak demikian. Ilmu Fisika juga erat kaitannya dengan disiplin-disiplin ilmu lainnya seperti bidang teknik, science bahkan ekonomi dengan adanya cabang ilmu baru yaitu fisika ekonomi. Jadi fisika gasing intinya adalah menyebarkan atau membuat fisika menjadi gampang dan manyenangkan untuk semua kalangan, tidak terbatas untuk kalangan-kalangan yang ber-IQ tinggi saja.

Sebagai salah satu contoh adalah tokoh dunia yang sangat terkenal Thomas Alfa Edison. Dalam kehidupan akademisnya Thomas kurang bagus, tetapi beliau bisa menjadi orang nomor satu karena hasil penemuannya. Dengan fisika gasing ini diharapkan anak yang tidak kelihatan pintar bisa kelihatan, dengan kata lain fisika gasing menjembataninya sehingga fisika yang dulunya merupakan sutu hal yang menyeramkan menjadi tidak menyeramkan dan menyenangkan yaitu dengan cara tidak memperlihatkan rumus-rumus.

Surya Institut dalam hal mewujudkan fisika gasing ini menggunakan teknologi jaman sekarang atau biasa disebut Teknik Informasi dan Komputer. Materi-materi dari fisika yang tidak menyenangkan digali dan diolah kembali dengan cara menghubungkan software atau piranti lunak pendidikan dengan alat peraga. Sehingga siswa / murid akan cepat mengerti dengan cara adanya sebuah visualisasi gambar yang menarik.

Hari juga menambahkan bahwa pada dasarnya pengajaran fisika gasing tersebut tidak sepenuhnya tergantung dari alat peraga dan multimedia. Akan tetapi bisa menggunakan alat sederhana yang lebih powerfull apabila ada murid yang tidak menyerap materinya. Fisika gasing ini sendiri juga tidak hanya diajarkan kepada siswa/murid saja, melainkan juga kepada para orang tua dan guru yang sebenarnya bukan mengajar di bidang fisika. Hal ini dikarenakan agar fisika gasing ini sendiri diharapkan bisa mengena ke semua lapisan, bukan kalangan-kalangan tertentu saja.

Di dalam fisika gasing ini sebenarnya ada juga istilah multi level education. Istilah ini digunakan karena dalam penyebaran ilmu melalui fisika gasing ini, orang-orang yang telah menerima pelatihannya diharapkan dapat menyebarkan fisika gasing ini ke orang yang lainnya. Pada prinsipnya hal ini seperti MLM (Multi Level Marketing) akan tetapi yang menjadi perbedaannya ini adalah kegiatan sosial yang menyebarkan ilmu pengetahuan khususnya fisika dengan metode pembelajaran fisika gasing tanpa memerlukan biaya yang sangat tinggi. Untuk membantu penyebaran tersebut orang-orang yang telah mengikuti pelatihan diharapkan untuk dapat mengunduh LKS di milis fisika gasing dan mengajarkannya kepada yang lainnya. Untuk mengunduhnya kita bisa mendatangi alamat website Surya Institute terlebih dahulu di www.suryainstitute.org .Untuk mendapatkan pelatihan dari Surya Institute diperlukan kurang lebih 20 orang dalam satu kelas, hal ini bertujuan agar fisika gasing ini lebih efektif dan efisien.

Harapan kedepan dari penerapan fisika gasing ini sendiri menurut Hari agar kedepannya nanti fisika tidak lagi jadi momok yang menakutkan kembali, dan semua orang menjadi mengerti tentang ilmu fisika. Tidak semua orang harus menjadi fisikawan tapi dengan profesinya masing-masing orang menggunakan metode fisika gasing ini.

Sahabat Iptek...simak terus informasi Iptek yang menarik dan berguna lainnya dari narasumber pakar dibidangnya pada siaran radio IPTEK VOICE langsung dari studio mini Kementerian Negara Riset dan Teknologi, Gedung BPPT II lt.8, Jl. M.H.Thamrin 8, Jakarta setiap hari Selasa pukul 08.30-09.00 WIB dan Kamis pukul 16.30-17.00 WIB di RRI Pro2 FM Jakarta 105.0 FM)

Fisika Lebih Menyenangkan Dengan Imajinasi

Itulah sepatah kata yang pernah dikatakan oleh Einstein. Berbicara tentang fisika dapat menimbulkan tanggapan yang beragam. Bukan gosip lagi kalau fisika merupakan salah satu "hantu" yang ditakuti oleh banyak pelajar, baik itu di tingkat menengah, umum, dan bahkan di perguruan tinggi. Sebagian orang menghafalkan rumus-rumus fisika layaknya buku sejarah tanpa menyadari maknanya. Ada juga yang pasrah karena menganggap fisika hanyalah milik orang-orang yang serius, cerdas, gila matematika, dan pada umumnya "kurang gaul". Bahkan, tidak sedikit yang beranggapan bahwa menjadikan fisika sebagai karir hidup adalah pilihan yang salah karena "masuknya" mudah tapi "keluarnya" susah. Dengan kata lain, menjadi mahasiswa fisika tidaklah sulit tapi lulusnya setengah mati dan kerjanya paling-paling menjadi guru atau kalau beruntung bisa menjadi dosen.

Beberapa pelajar mengagumi fisika karena membaca berita mengenai keberhasilan tim olimpiade fisika atau membaca buku tentang kehidupan para ilmuwan besar. Sayang, banyak juga yang hanya sebatas mengagumi tidak sampai menghayati atau mendalami fisika. Seringkali orang yang menguasai fisika dianggap sebagai orang "keren" sekaligus "aneh" karena mau belajar sesuatu yang sulit, padahal kalau jadi pengusaha bisa kaya-raya. Persepsi-persepsi demikian mengakibatkan masyarakat umum cenderung menggemari ilmu lain seperti metafisika. Disaat negara-negara lain berusaha untuk menyadarkan masyarakatnya agar tidak "gatek" alias gagap iptek negara kita melalui beberapa media massa tampaknya bekerja keras meyakinkan masyarakat agar tidak "gagib" atau gagap gaib. Padahal, penyampaian informasi ini menggunakan aplikasi fisika dan elektronika. Singkatnya, menemukan orang yang menyukai fisika bagaikan mencari jarum pentul didalam tumpukan jerami.

Banyak sekali pelajar atau mahasiswa yang sabar menunggu penayangan rumus-rumus fisika di papan tulis, kemudian mengerjakan soal-soal fisika. Dari pengalaman, soal-soal tersebut diselesaikan dengan cara "gotong-royong" karena hanya sedikit orang yang bisa atau mau mengerjakannya. Keberhasilan pengajaran tidak jarang didasarkan atas kemampuan mengerjakan soal-soal ujian akhir, bukan pada penguasaan makna fisis dari rumus tersebut.

Sebagai contoh, hampir semua orang di kelas tahu hukum kedua Newton, F = m.a, tetapi mungkin tak pernah terbayangkan bahwa rumus tersebut dapat menceritakan mengapa orang-orang gendut lebih suka main tarik tambang daripada lari 100 meter. Kemudian, siapa yang tak mengenal persamaan terkenal Einstein E = mc2 ? Sayang, sedikit sekali orang yang mengetahui bahwa massa sebuah buku fisika dasar mengandung energi yang dapat membawa suatu wahana antariksa ke bulan!

Salah satu penyebab persepsi negatif tentang fisika adalah bahwa ilmu tersebut seringkali diajarkan tanpa penghayatan sehingga terasa menyebalkan. Padahal, melalui fisika kita dapat mengetahui banyak hal. Seorang pelajar yang mulai mempelajari ilmu ini tidak perlu jauh-jauh mengunjungi laboratorium untuk melihat fenomena fisika. Kapanpun dan dimanapun ia dapat berimajinasi (menghayal) tentang lingkungan sekitarnya. Keindahan warna bunga yang tampak oleh mata, musik yang terdengar nyaman di telinga, air terjun yang memikat, aliran angin yang sejuk, adalah sedikit contoh dari fenomena fisika sehari-hari. Penjelasan bahwa setiap warna memiliki panjang gelombang yang berbeda-beda dan bahwa benda-benda menyerap serta meradiasikan panjang gelombang tertentu sehingga sampai ke mata kita, dapat dibaca dalam buku fisika. Akan tetapi seringkali orang tidak peduli dengan penjelasan itu karena tidak berimajinasi sehingga ia lupa akan keindahan alam dan tidak memiliki rasa ingin tahu.

Imajinasi lahir dari lingkungan yang mendukung seseorang agar memikirkan berbagai fenomena disekitarnya. Jika masyarakat sekitar atau keluarga di rumah tidak menghargai kebebasan berpikir maka daya imajinasi sulit untuk berkembang. Hampir semua fisikawan terkenal adalah orang-orang yang suka berimajinasi dan seringkali dikatakan sebagai pemikir "radikal" karena dianggap aneh oleh lingkungan yang seringkali bersifat dogmatis. Einstein adalah contoh populer dari orang yang suka berimajinasi dan mengembangkannya. Ia membayangkan bagaimana seandainya ia dapat bergerak dengan kecepatan cahaya. Pemikiran aneh ini menghasilkan teori relativitas khusus yang sampai kini masih digunakan. Hal yang sama dilakukan oleh Newton. Kalau saja ia tidak suka melamun dibawah pohon apel mungkin hukum gravitasi universalnya tidak ditemukan sampai berpuluh-puluh tahun kemudian.

Melalui imajinasi, kesadaran untuk mengamati fenomena alam dan membaca buku-buku fisika akan muncul dengan sendirinya. Sebagai contoh, molekul air (H2O) terdiri atas dua buah atom hidrogen dan sebuah atom oksigen. Kita tentu tidak mungkin melihat molekul air dengan mata telanjang. Akan tetapi, kita bisa berimajinasi bahwa molekul-molekul tersebut berukuran kecil sekali sehingga tak tampak. Oleh karenanya, jumlah molekul yang menyusun suatu benda haruslah sangat banyak. Melalui imajinasi kita tergerak untuk mempelajari bahwa satu mol molekul air (yang beratnya sekitar 18 gram) mengandung sekitar 6 x 1023 molekul. Jadi, satu sendok air ternyata terdiri atas sekitar 1022 molekul. Jumlah itu sangatlah besar. Jika seluruh penduduk indonesia diberi tugas untuk menghitung satu per satu molekul berbeda tiap 5 detik maka itu membutuhkan waktu bermiliar-miliar tahun!

Fisikawan tidak membuat rumus-rumus untuk dihafalkan atau ditulis pada telapak tangan. Rumus-rumus dibuat untuk memahami fenomena-fenomena alam dalam bentuk yang ringkas, indah, universal, dan berguna untuk menyelesaikan masalah yang menyangkut fenomena tersebut. Memang, fisika tidak mungkin terlepas dari matematika. Tanpa definisi matematis, fisika sangat sulit dikembangkan dan dimanfanfaatkan sebagai teknologi. Meskipun demikian, untuk mempelajari dasar-dasar fisika seseorang tidak perlu menjadi "gila" matematika ataupun menjadi serius dan takut tak dapat pacar karena "kurang gaul". Belajar fisika memang tidak mudah, tapi dengan melepaskan diri dari pemikiran yang dogmatis dan keinginan untuk berpikir bebas, imajinasi akan muncul dan bisa menjadi petualangan yang menyenangkan bagi siapapun


Model Atom Dalton

Pada tahun 1803, John Dalton mengemukakan mengemukakan pendapatnaya tentang atom. Teori atom Dalton didasarkan pada dua hukum, yaitu hukum kekekalan massa (hukum Lavoisier) dan hukum susunan tetap (hukum prouts). Lavosier mennyatakan bahwa "Massa total zat-zat sebelum reaksi akan selalu sama dengan massa total zat-zat hasil reaksi". Sedangkan Prouts menyatakan bahwa "Perbandingan massa unsur-unsur dalam suatu senyawa selalu tetap". Dari kedua hukum tersebut Dalton mengemukakan pendapatnya tentang atom sebagai berikut:
  1. Atom merupakan bagian terkecil dari materi yang sudah tidak dapat dibagi lagi
  2. Atom digambarkan sebagai bola pejal yang sangat kecil, suatu unsur memiliki atom-atom yang identik dan berbeda untuk unsur yang berbeda
  3. Atom-atom bergabung membentuk senyawa dengan perbandingan bilangan bulat dan sederhana. Misalnya air terdiri atom-atom hidrogen dan atom-atom oksigen
  4. Reaksi kimia merupakan pemisahan atau penggabungan atau penyusunan kembali dari atom-atom, sehingga atom tidak dapat diciptakan atau dimusnahkan.

Hipotesa Dalton digambarkan dengan model atom sebagai bola pejal seperti pada tolak peluru. Seperti gambar berikut ini:model atom dalton


Model Atom Dalton seperti bola pejal

Percobaan Lavosier

sketsa alat percobaan laovosier

Mula-mula tinggi cairan merkuri dalam wadah yang berisi udara adalah A, tetapi setelah beberapa hari merkuri naik ke B dan ketinggian ini tetap. Beda tinggi A dan B menyatakan volume udara yang digunakan oleh merkuri dalam pembentukan bubuk merah (merkuri oksida). Untuk menguji fakta ini, Lavoisier mengumpulkan merkuri oksida, kemudian dipanaskan lagi. Bubuk merah ini akan terurai menjadi cairan merkuri dan sejumlah volume gas (oksigen) yang jumlahnya sama dengan udara yang dibutuhkan dalam percobaan pertama

Percobaan Joseph Pruost

Pada tahun 1799 Proust menemukan bahwa senyawa tembaga karbonat baik yang dihasilkan
melalui sintesis di laboratorium maupun yang diperoleh di alam memiliki susunan yang tetap.

Percobaan
ke-
Sebelum pemanasan (g Mg)
Setelah pemanasan (g MgO)
Perbandingan Mg/MgO
1
0,62
1,02
0,62/1,02 = 0,61
2
0,48
0,79
0,48/0,79 = 0,60
3
0,36
0,60
0,36/0,60 = 0,60

Kelemahan Model Atom Dalton

Kelebihan
Mulai membangkitkan minat terhadap penelitian mengenai model atom

Kelemahan
Teori atom Dalton tidak dapat menerangkan suatu larutan dapat menghantarkan arus listrik. Bagaimana mungkin bola pejal dapat menghantarkan arus listrik? padahal listrik adalah elektron yang bergerak. Berarti ada partikel lain yang dapat menghantarkan arus listrik.

Model Atom Thomson


Berdasarkan penemuan tabung katode yang lebih baik oleh William Crookers, maka J.J. Thomson meneliti lebih lanjut tentang sinar katode dan dapat dipastikan bahwa sinar katode merupakan partikel, sebab dapat memutar baling-baling yang diletakkan diantara katode dan anode. Dari hasil percobaan ini, Thomson menyatakan bahwa sinar katode merupakan partikel penyusun atom (partikel subatom) yang bermuatan negatif dan selanjutnya disebut elektron.
Atom merupakan partikel yang bersifat netral, oleh karena elektron bermuatan negatif, maka harus ada partikel lain yang bermuatan positifuntuk menetrallkan muatan negatif elektron tersebut. Dari penemuannya tersebut, Thomson memperbaiki kelemahan dari teori atom dalton dan mengemukakan teori atomnya yang dikenal sebagai Teori Atom Thomson.
Yang menyatakan bahwa:

"Atom merupakan bola pejal yang bermuatan positif dan didalamya tersebar muatan negatif elektron"

Model atomini dapat digambarkan sebagai jambu biji yang sudah dikelupas kulitnya. biji jambu menggambarkan elektron yang tersebar marata dalam bola daging jambu yang pejal, yang pada model atom Thomson dianalogikan sebagai bola positif yang pejal. Model atom Thomson dapat digambarkan sebagai berikut:


Percobaan Sinar Katode


Kelebihan dan Kelemahan Model Atom Thomson

Kelebihan
Membuktikan adanya partikel lain yang bermuatan negatif dalam atom. Berarti atom bukan merupakan bagian terkecil dari suatu unsur.

Kelemahan
Model Thomson ini tidak dapat menjelaskan susunan muatan positif dan negatif dalam bola atom tersebut.

Model Atom Rutherford


Rutherford bersama dua orang muridnya (Hans Geigerdan Erners Masreden)melakukan percobaan yang dikenal dengan hamburan sinar alfa (λ) terhadap lempeng tipis emas. Sebelumya telah ditemukan adanya partikel alfa, yaitu partikel yang bermuatan positif dan bergerak lurus, berdaya tembus besar sehingga dapat menembus lembaran tipis kertas. Percobaan tersebut sebenarnya bertujuan untuk menguji pendapat Thomson, yakni apakah atom itu betul-betul merupakan bola pejal yang positif yang bila dikenai partikel alfa akan dipantulkan atau dibelokkan. Dari pengamatan mereka, didapatkan fakta bahwa apabila partikel alfa ditembakkan pada lempeng emas yang sangat tipis, maka sebagian besar partikel alfa diteruskan (ada penyimpangan sudut kurang dari 1°), tetapi dari pengamatan Marsden diperoleh fakta bahwa satu diantara 20.000 partikel alfa akan membelok sudut 90° bahkan lebih.
Berdasarkan gejala-gejala yang terjadi, diperoleh beberapa kesipulan beberapa berikut:
  1. Atom bukan merupakan bola pejal, karena hampir semua partikel alfa diteruskan
  2. Jika lempeng emas tersebut dianggap sebagai satu lapisanatom-atom emas, maka didalam atom emas terdapat partikel yang sangat kecil yang bermuatan positif.
  3. Partikel tersebut merupakan partikelyang menyusun suatu inti atom, berdasarkan fakta bahwa 1 dari 20.000 partikel alfa akan dibelokkan. Bila perbandingan 1:20.000 merupakan perbandingan diameter, maka didapatkan ukuran inti atom kira-kira 10.000 lebih kecil daripada ukuran atom keseluruhan.

Berdasarkan fakta-fakta yang didapatkan dari percobaan tersebut, Rutherford mengusulkan model atom yang dikenal dengan Model Atom Rutherford yang menyatakan bahwa Atom terdiri dari inti atom yang sangat kecil dan bermuatan positif, dikelilingi oleh elektron yang bermuatan negatif. Rutherford menduga bahwa didalam inti atom terdapat partikel netral yang berfungsi mengikat partikel-partikel positif agar tidak saling tolak menolak.

Model atom Rutherford dapat digambarkan sebagai beriukut:

Model Atom Rutherford

Percobaan Rutherford

set alat percobaan rutherford

Kelemahan Model Atom Rutherford

Kelebihan
Membuat hipotesa bahwa atom tersusun dari inti atom dan elektron yang mengelilingi inti

Kelemahan
Tidak dapat menjelaskan mengapa elektron tidak jatuh ke dalam inti atom. Berdasarkan teori fisika, gerakan elektron mengitari inti ini disertai pemancaran energi sehingga lama - kelamaan energi elektron akan berkurang dan lintasannya makin lama akan mendekati inti dan jatuh ke dalam inti Ambilah seutas tali dan salah satu ujungnya Anda ikatkan sepotong kayu sedangkan ujung yang lain Anda pegang. Putarkan tali tersebut di atas kepala Anda. Apa yang terjadi? Benar. Lama kelamaan putarannya akan pelan dan akan mengenai kepala Anda karena putarannya lemah dan Anda pegal memegang tali tersebut. Karena Rutherford adalah telah dikenalkan lintasan/kedudukan elektron yang nanti disebut dengan kulit.

Model Atom Bohr

bohr

Pada tahun 1913, pakar fisika Denmark bernama Neils Bohr memperbaiki kegagalan atom Rutherford melalui percobaannya tentang spektrum atom hidrogen. Percobaannya ini berhasil memberikan gambaran keadaan elektron dalam menempati daerah disekitar inti atom. Penjelasan Bohr tentang atom hidrogen melibatkan gabungan antara teori klasik dari Rutherford dan teori kuantum dari Planck, diungkapkan dengan empat postulat, sebagai berikut:

  1. Hanya ada seperangkat orbit tertentu yang diperbolehkan bagi satu elektron dalam atom hidrogen. Orbit ini dikenal sebagai keadaan gerak stasioner (menetap) elektron dan merupakan lintasan melingkar disekeliling inti.
  2. Selama elektron berada dalam lintasan stasioner, energi elektron tetap sehingga tidak ada energi dalam bentuk radiasi yang dipancarkan maupun diserap.
  3. Elektron hanya dapat berpindah dari satu lintasan stasioner ke lintasan stasioner lain. Pada peralihan ini, sejumlah energi tertentu terlibat, besarnya sesuai dengan persamaan planck, ΔE = hv.
  4. Lintasan stasioner yang dibolehkan memilki besaran dengan sifat-sifat tertentu, terutama sifat yang disebut momentum sudut. Besarnya momentum sudut merupakan kelipatan dari h/2∏ atau nh/2∏, dengan n adalah bilangan bulat dan h tetapan planck.

Menurut model atom bohr, elektron-elektron mengelilingi inti pada lintasan-lintasan tertentu yang disebut kulit elektron atau tingkat energi. Tingkat energi paling rendah adalah kulit elektron yang terletak paling dalam, semakin keluar semakin besar nomor kulitnya dan semakin tinggi tingkat energinya.

model atom bohr

Percobaan Bohr

percobaan yang dialkukan rutherford

Kelebihan dan Kelemahan

Kelebihan
atom Bohr adalah bahwa atom terdiri dari beberapa kulit untuk tempat berpindahnya elektron.
Kelemahan
model atom ini adalah tidak dapat menjelaskan efek Zeeman dan efek Strack

Model Atom Modern

Model atom mekanika kuantum dikembangkan oleh Erwin Schrodinger (1926).Sebelum Erwin Schrodinger, seorang ahli dari Jerman Werner Heisenberg mengembangkan teori mekanika kuantum yang dikenal dengan prinsip ketidakpastian yaitu “Tidak mungkin dapat ditentukan kedudukan dan momentum suatu benda secara seksama pada saat bersamaan, yang dapat ditentukan adalah kebolehjadian menemukan elektron pada jarak tertentu dari inti atom”.

Erwin SchrodingerErwin Schrodinger

Werner HeisenbergWerner Heisenberg

Daerah ruang di sekitar inti dengan kebolehjadian untuk mendapatkan elektron disebut orbital. Bentuk dan tingkat energi orbital dirumuskan oleh Erwin Schrodinger.Erwin Schrodinger memecahkan suatu persamaan untuk mendapatkan fungsi gelombang untuk menggambarkan batas kemungkinan ditemukannya elektron dalam tiga dimensi.

Persamaan Schrodinger

persamaan

x,y dan z
Y
m
ђ
E
V

= Posisi dalam tiga dimensi
= Fungsi gelombang
= massa
= h/2p dimana h = konstanta plank dan p = 3,14
= Energi total
= Energi potensial

Model atom dengan orbital lintasan elektron ini disebut model atom modern atau model atom mekanika kuantum yang berlaku sampai saat ini, seperti terlihat pada gambar berikut ini.

model atom
Model atom mutakhir atau model atom mekanika gelombang

Awan elektron disekitar inti menunjukan tempat kebolehjadian elektron. Orbital menggambarkan tingkat energi elektron. Orbital-orbital dengan tingkat energi yang sama atau hampir sama akan membentuk sub kulit. Beberapa sub kulit bergabung membentuk kulit.Dengan demikian kulit terdiri dari beberapa sub kulit dan subkulit terdiri dari beberapa orbital. Walaupun posisi kulitnya sama tetapi posisi orbitalnya belum tentu sama.

CIRI KHAS MODEL ATOM MEKANIKA GELOMBANG

  1. Gerakan elektron memiliki sifat gelombang, sehingga lintasannya (orbitnya) tidak stasioner seperti model Bohr, tetapi mengikuti penyelesaian kuadrat fungsi gelombang yang disebut orbital (bentuk tiga dimensi darikebolehjadian paling besar ditemukannya elektron dengan keadaan tertentu dalam suatu atom)
  2. Bentuk dan ukuran orbital bergantung pada harga dari ketiga bilangan kuantumnya. (Elektron yang menempati orbital dinyatakan dalam bilangan kuantum tersebut)
  3. Posisi elektron sejauh 0,529 Amstrong dari inti H menurut Bohr bukannya sesuatu yang pasti, tetapi bolehjadi merupakan peluang terbesar ditemukannya elektron

Percobaan chadwick

percobaan Chadwick

Kelemahan Model Atom Modern

Persamaan gelombang Schrodinger hanya dapat diterapkan secara eksak untuk partikel dalam kotak dan atom dengan elektron tunggal

Pengetahuan para ilmuwan tentang atom bukan berdasarkan pengamatan langsung terhadap atom per atom, sebab ato terlalu kecil untuk dapat diamati dan diukur sacara langsung. Diameter atom dinyakini berkisar antara 30 sampai 150 pm. Dengan alat pembesar apapun kita belum dapat melihat atom, tetapi gejala yang ditimbulkan oleh atom itu dapat diukur seperti jejak atom, nyala, difraksi, dan lain-lain. Teori-teori atom yang ada sekarang hanya merupakan model yang dibangun oleh para ilmuwan sebagai kesimpulan dari hasil berbagai kajian teoritis dan gejala empiris dengan berbagai pendekatan dan metode ilmiah. Itulah sebabnya terdapat beberapa model atom yang telah dikembangkan dan dipublikasikan menurut tenemuan-tenemuan yang secara sinergetis saling mendukung atau bahkan menolak usulan model atom sebelumnya. Sampai saat ini, teori atom yang paling muktahir adalah berdasarkan teori mekanika kuantum atau mekanika gelombang dengan berbagai asumsi dan teorema.

Perkembangan Model Atom

Definisi awal tentang konsep atom berlangsung > 2000 thn. Dulu atom dianggap sebagai bola keras sedangkan sekarang atom dianggap sebagai awan materi yang kompleks. Dibawah ini akan dipaparkan konsep Yunani tentang atom:

  1. Pandangan filosof Yunani
    Atom adalah Konsep kemampuan untuk dipecah yg tiada berakhir
  2. Leucippus (Abad ke-5 SM)
    Ada batas kemampuan untuk dibagi, sehingga harus ada bagian yang tidak dapat dibagi lagi
  3. Democritus (380-470 SM)
    A: tidak, tomos: dibagi. Jadi atom adalah partikel yang tidak dapat dibagi lagi. Atom setiap unsur memilki bentuk & ukuran yang berbeda.
  4. Lucretius
    Sifat atom suatu bahan dalam “On the Nature of Things

Perkembangan Model Atom Secara Ilmiah

Pengembangan konsep atom-atom secara ilmiah dimulai oleh John Dalton (1805), kemudian dilanjutkan oleh Thomson (1897), Rutherford (1911) dan disempurnakan oleh Bohr (1914). Setelah model atom Bohr, Heisenberg mengajukan model atom yang lebih dikenal dengan model atom mekanika gelombang atau model atom modern.

Hasil eksperimen yang memperkuat konsep atom ini menghasilkan gambaran mengenai susunan partikel-partikel tersebut di dalam atom. Gambaran ini berfungsi untuk memudahkan dalam memahami sifat-sifat kimia suatu atom. Gambaran susunan partikel-partikel dasar dalam atom disebut model atom.

Tidak ada komentar:

Poskan Komentar